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ABSTRACT

We present a method that computes a global potentially visible set for the complete region outside the convex hull
of an object. The technique is used to remove invisible parts (triangles) from complex tessellated CAD models. Such
optimizations are required to achieve interactive frame rates for the visual exploration of huge data sets on graphics
workstations. Our algorithm is subdivided into three stages. At the first step the the tesselated object is rendered
with OpenGL from various camera positions to detect visible triangles very fast. A hardware-accelerated hemicube
test is applied as the second stage, marking all triangles that can directly exchange energy with an infinitely distant
environment. Finally, a Monte Carlo ray tracing pass is applied to each remaining triangle, sampling its visibility
with arbitrary accuracy. All invisible triangles are completely removed from the mesh. It is therefore not necessary
to store visibility information, allowing the reduced mesh to be processed and displayed by any software.
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1. INTRODUCTION

Triangulated CAD models can consist of several mil-
lions of triangles. Such large data sets still cannot be
handled in real-time by modern graphics cards. Nev-
ertheless interactive frame rates are crucial for visual
quality assurance. Most often a model is inspected
only from the outside of the convex hull or any point
reachable from there without penetrating the surface.
The interior of the object is irrelevant in this case.
The elimination of the invisible parts (triangles) leads
to significant improvements for real-time applications,
because the display performance is limited by the ge-
ometric complexity of the meshes.

Traditionally, users have selected and removed the in-
visible parts of the models by hand. This process
is very time consuming, in particular when a large
number of data sets must be prepared for visualiza-
tion. More recently, fully automatic removal methods

were integrated into commercial mesh processing soft-
ware. A common technique uses OpenGL and graph-
ics hardware to render the object from several camera
positions to identify visible triangles. Yet, the lim-
ited precision of this approach causes severe problems
for complex geometries. A more robust method, that
computes visibility with arbitrary precision was there-
fore requested by the industry. We have developed an
efficient three stage algorithm and integrated it into
our commercial mesh processing tool. It is success-
fully used by industrial customers.

2. PREVIOUS WORK

Visibility computations can be categorized according
to the criteria: from-point visibility vs. from-region
visibility, object-precision vs. image precision and
cell-and-portal vs. generic scenes. Extensive surveys
about this research area can be found in [1] and [2].



From-region visibility for cell-and-portal scenes, that
can be divided into rooms connected by doors or win-
dows, was first addressed by Airey [3], Teller and Se-
quin [4] and by Luebke et al. [5]. Their methods target
interactive walk-throughs of architectural interiors and
similar data sets. For each cell, the potentially visible
set (PVS) of scene entities is precomputed and queried
during rendering. Their methods are conservative in
that the PVS contain at least all visible objects.

A Point-based object-precision algorithm for scenes
with large occluders was presented by Coorg and Teller
in [6] and [7]. Hudson et al. have developed a tech-
nique to compute from-point visibility by culling ob-
jects at the frusta of potential occluders [8]. The algo-
rithm was improved by Bittner et al., using a BSP-tree
[9].

Image-precision from-point visibility is similar to the
well known hidden surface removal problem. The dif-
ference is that it is sufficient for occlusion culling to
determine whether any part of an object is visible.
Ray tracing is an example for an image synthesis al-
gorithm, that has efficient occlusion culling built right
into it. Implementations with extraordinary perfor-
mance were presented by Wald et al. [10], [11] and
[12]. The hierarchical Z-buffer [13] and the hierarchi-
cal occlusion map [14] are intended for use in the clas-
sic rasterization pipeline. More recently, support for
image-precision occlusion culling was integrated into
graphics hardware. In OpenGL 1.5, occlusion queries
return the number of pixels drawn onto the screen.
This can be used to test if the bounding box of an
object is visible, before the complete geometry is sent
down the pipeline.

Generic from-region visibility can be computed by
sampling the region with from-point visibility tests.
Gotsman et al. use a 5D-tree to partition the five-
dimensional viewing parameter space and store PVS in
the leafs of the tree [15]. Conservative methods, that
do not miss any potentially visible objects were dis-
cussed by Cohen-Or et al. [16] and by Saona-Vazquez
et al. [17]. Their algorithms were not able to perform
occluder fusion, which is very important for effective
from-region visibility culling. Schaufler et al. vox-
elized the occluders and applied a fusion method to
this discretized representation [18]. Durand et al. in-
troduced extended projections, an extension to point-
based image-precision algorithms [19].

3. OVERVIEW

Our method could be classified as an aggressive from-
region visibility algorithm using image-precision tech-
niques to samples the region. Aggressive means that
the algorithm never misses any invisible triangles, but
it may remove some visible geometry if not properly

Figure 1: Visibility of edges in 2D. Solid lines are directly
visible. The dashed lines are indirectly visible and the
dotted lines are completely invisible.

configured. This is an important feature for the mas-
sive data reduction required. Additionally, the vis-
ibility is not only computed for a small region, but
globally for the complete area outside the convex hull
of the object. Visibility information is not stored in
a complex data structure. Instead, the invisible parts
are completely removed from the scene description.

We introduce the following nomenclature (depicted in
figure 1 for visibility:

A triangle t is directly visible, if there exists
a ray from infinity, whose first intersection
with the scene is in t.

A triangle t is indirectly visible, if an arbi-
trary path from infinity exists, that ends in t

and has no other intersection with the scene.

The algorithm is separated into three stages, that are
always executed in this order:

Multi Test This test renders the scene from several
camera positions using OpenGL. A triangle is
marked as visible if it appears in any of the im-
ages.

Single Test Up to six images, covering all incoming
directions, are rendered from the centroid of each
triangle. If the background is visible (tested with
occlusion query) in any image, the triangle is visi-
ble. In this way, direct visibility can be computed
with high accuracy, except for partially occluded
large triangles.

Ray Tracing Test A set of rays is adaptively cast
from the surface of each triangle into all direc-
tions. If any ray leaves the scene, the triangle
can be seen from outside the convex hull. With
reflections enabled, this test can also compute in-
direct visibility. Ray tracing is the most reliable
method with the highest accuracy.



Each test marks those triangles, that it has detected
to be visible and passes the remaining triangles to the
next stage. All triangles that are not marked after the
last test, are eventually removed from the scene. The
tests are used together to combine their advantages
and improve performance as described in the following
sections.

4. MULTI TEST

Figure 2: Principle of the multi test.

The multi test is based on the principle, to keep only
those triangles visible from a set of multiple camera
positions. Figure 2 illustrates this process. Therefor
we render the model using OpenGL into a PBuffer.
Each triangle is drawn with a unique color. Since
we use a standard RGBA color format with eight bits
per component, we are theoretically limited to models
with at most 232 − 1 = 4, 294, 967, 295 triangles. If
such huge models will become usable in the future, we
could easily change the PBuffer to a 128 bit floating
point format. Afterwards we read back the image and
mark every triangle, that is represented in the image
as visible.

In order to achieve good results, we place the cameras
on a sphere, which is 1.5 times bigger than the largest
extent of the object bounding box. The viewing frus-
tum is always headed towards the center of the object
and the six frustum planes are fitted tightly around the
bounding box. By this means we make the best use of
the limited PBuffer resolution. Although this implies a
fairly distorted frustum, it improves the identification
rate, significantly.

Computing camera positions based on a simple spher-
ical parameterization leads to lumping of the samples

at the poles. This waste of computational resources
can be avoided by transforming a 2D Larcher Pil-
lichshammer random quasi Monte Carlo sequence from
the [0, 1]× [0, 1] unit square to the sphere. The follow-
ing mapping is applied:

x = cx + 2r · sin
(

√

u − u2

)

· cos(2πv)

y = cy + 2r · sin
(

√

u − u2

)

· sin(2πv)

z = cz + r(1 − 2u)

where u and v are the coordinates of the sample point
in the unit square and r is the radius of the sphere.
The values cx, cy and cz contain the center of the
sphere and x, y and z are the resulting coordinates.

The key advantage of this method is to quickly de-
tect a large number of directly visible triangles. For
most simple models, it is sufficient to evaluate visibil-
ity from a few tens of camera positions. However, the
method fails for high resolution triangle meshes, typ-
ically used in industrial applications. These models
usually consist of triangles, whose projection measures
less than a pixel in screen space. As a consequence,
many triangles are overlooked, because they never ap-
pear in the frame-buffer. In fact, this is aliasing, due
to under-sampling of the image. Unfortunately, the
PBuffer resolution is limited by the hardware. Image
9 depicts an example for the failure of the multi test.
A workaround for this restriction is tiled rendering.
The image plane is divided into smaller rectangular
regions that fit into the PBuffer. In this way, quality
is increased whereas rendering time increases linearly
with the number of tiles.

5. SINGLE TEST

Figure 3: Placement of the virtual cube in the single
visibility test.

The second test actually reverses the method of the
multi test. While the multi test considers the whole
model in each step, this is a triangle centric approach.
It iterates over all triangles, that are not yet marked as



visible and applies a technique similar to the hemicube
method [20] for radiosity computations.

Basically we place a virtual cube in the center of the
triangle and render six images onto each face. We need
to use the entire cube, because most real world data
sets, do not have consistently oriented normal vectors.
Depending on the capabilities of the graphics hardware
we either use occlusion queries or frame-buffer read-
back for compatibility to OpenGL 1.2.

The occlusion method renders the model after setting
up the camera transformation to look through one of
the cube’s faces. Subsequently, the model view matrix
is reset to the identity. A screen filled quad is now
drawn at the far plane with occlusion test enabled. If
the number of visible fragments is greater than zero, a
straight path to the triangle originating from infinity,
exists. This means, that the triangle is visible outside
the convex hull of the object and should be kept. Fol-
lowing tests with further directions of the virtual cube
can be skipped.

The plain OpenGL approach running on older graph-
ics hardware, that does not support occlusion queries,
renders the model into the depth buffer just like the
advanced method. The screen sized quad is now drawn
using a special color. The rendered image is read back
into main memory and inspected for pixels containing
this color.

Both methods render the geometry without updating
the color buffer. Only the depth values are computed.
This technique saves memory bandwidth and exploits
the capability of modern graphics chips to compute
depth-only images in half the time.

The single test fails for large triangles, that are par-
tially occluded, because the visibility is only tested for
the centroid. On the other hand, the direct visibility
is computed with very high accuracy for that point.
Rendering six sides of the cube with a typical reso-
lution of 64 × 64 pixels each, corresponds to 24,576
camera positions in the multi test. However, it is re-
quired to render up to six images for each triangle,
leading to very long computation times.

6. RAY TRACING TEST

The global visibility problem is analog to the global
illumination problem. Consider an infinitely large
sphere surrounding the geometry, radiating inwards.
A triangle is globally visible if any amount of energy
from the light source can reach it, including multiple
reflections on the way to the triangle. The impor-
tant difference to global illumination is, that the exact
amount of energy transferred need not be computed.

A large number algorithms to solve global light trans-
port problems were developed in the past. Ray tracing

Figure 4: Path of a ray for an indirectly visible triangle.

is most suitable for a visibility test, because it is nat-
urally adaptive, can handle arbitrarily complex scenes
and allows for highly efficient implementations, includ-
ing thread and host parallelism. Efficiency and good
scalability for large scenes are clearly necessary to cope
with typical scenes consisting of many millions of tri-
angles. Adaptivity, on the other hand, is the key to
exploit the difference to classic global illumination: It
is sufficient to know if any ray can reach the triangle,
possibly including an arbitrary number of reflections
at the geometry.

Performance of ray tracing based algorithms is directly
related to the chosen sampling strategy and the de-
gree of coherence in the rays. Sampling is substan-
tially different to image rendering. For the visibility
test, a set of rays is shot from the triangle surface into
different directions. Two sets of samples must be com-
puted, one for the ray origins, located on the triangle,
and one for the ray directions, covering a full sphere.
We use two connected randomized quasi Monte Carlo
(RQMC) sequences for this purpose. In this way, loca-
tions and directions cover their domains evenly, while
each ray has a unique origin and direction.

Locations on the triangle are computed by transform-
ing a Sobol sequence from the unit square to the tri-
angle surface. Very efficient code for the computation
of Sobol’s low discrepancy point set is presented in
[21]. The mapping to the triangle surface is computed
according to Turk’s formula [22]:

α = 1 −
√

u

β = (1 − v)
√

u

γ = v
√

u

where u and v are the coordinates of the point in the
unit square and α, β and γ are the barycentric coordi-
nates of the transformed point in the triangle. Figure
5 shows an example for this mapping.

For the directional samples, we do not use a single
Monte Carlo sequence. Instead, the directional space
is subdivided into a set of sectors, each of which is
sampled by a short Larcher-Pillichshammer sequence
as described in section 4. In this way, directions can
be tested adaptively, while coherence of the rays is
increased.



Figure 5: Sampling of a triangle with 256 transformed
Sobol samples.

An important advantage of ray tracing over all other
tests, is its ability to determine not only direct visi-
bility, but also indirect visibility. This is achieved by
switching to the path tracing algorithm, bouncing rays
up to n times after they hit an occluder. Rays are scat-
tered with equal probability into all directions of the
incoming hemisphere. This corresponds to a perfectly
diffuse reflection model without importance sampling.
When all triangles in the scene are consistently ori-
ented, it would also be possible to propagate visibility
along the rays. A ray that hits a visible triangle on its
front side can propagate the visibility to all triangles
that its path hits.

A kd-tree is used for ray shooting acceleration. This
data structure is well suited for very large data sets
and can handle scenes with detail at different scales,
very efficiently. We apply various optimization tech-
niques to reduce the memory footprint and increase
traversal speed. A good survey of such methods was
presented by Havran in [23]. The Moeller-Trumbore
ray-triangle test [24] was chosen for intersection calcu-
lations, because it does not require the plane equation
to be stored with the triangles.

In contrast to the other visibility tests, the ray tracing
method has no inherent limitations and can compute
direct or indirect visibility with arbitrary precision.

Figure 6: The horn dataset is a smaller model consisting
of 36,621 triangles.

Figure 7: The car door scene consisting of 782,018 tri-
angles. The top most surface was removed to show the
interior of the door.

Two parameters are controlling accuracy: the number
of rays and the trace depth for each ray. Both can
be chosen by the user so that an acceptable trade-off
between computation time and precision is achieved.

7. RESULTS

The entkerner is already in use by our customers in
the automotive industry. We have chosen two typ-
ical examples from this application area to evaluate
the three test stages and demonstrate the capabili-
ties of our system. The first example is the door of
a car including all mechanical components consisting
of 782,018 triangles. Our second example is the com-
plete engine of the new BMW 5 series. The model
contains 3,741,833 triangles. Additionally we applied
the entkerner to a smaller dataset, the horn. It has
36,621 triangles. The single test was analyzed using
this model.

We have tested various parameter sets on a dual
Xeon 2.4 GHz with 2 GB of Rambus memory and an
NVIDIA GeForce FX 5800 Ultra graphics card. The
results are listed in tables 1, 2 and 3. The following
abbreviations are used:

MR PBuffer Resolution for the multi test.

MV Number of views used by the multi test.

SR PBuffer Resolution for the single test.

TR Maximal number of rays shot by the ray
tracing test per triangle.



Figure 8: The engine of a BMW 5 with 3,741,833 tri-
angles. Most of the geometry is never visible when the
camera is outside the convex hull of the engine.

Time Total computation time.

Tri Number of remaining triangles after all tests
have passed.

Vis Percentage of initial triangles classified as
visible.

MR MV TR Time Tri Vis

- - - - 3,741,833 100 %
256 128 - 3m:18s 341,740 9 %
512 128 - 3m:17s 556,752 15 %

1024 128 - 3m:20s 771,270 21 %
2048 128 - 3m:31s 942,651 25 %

256 512 - 13m:10s 554,864 15 %
512 512 - 13m:10s 776,893 21 %

1024 512 - 13m:13s 966,731 26 %
2048 512 - 14m:02s 1,109,857 30 %

2048 128 64 19m:39s 1,115,762 29 %
2048 128 256 1h:02m 1,217,817 33 %
2048 128 1024 3h:43m 1,311,566 35 %

Table 1: Results for various parameter sets tested with
the engine scene.

Obviously, the PBuffer resolution for the multi test
has only little influence on the rendering time, be-
cause performance is limited by the geometry, not
the fill rate. The recognition rate for visible trian-
gles, however, increases dramatically. It is therefore
recommended to chose the highest resolution possible.
Figure 9 shows a series of images with different PBuffer
resolutions. Only if the resulting model is viewed at a
fixed resolution without zooming in, is a lower PBuffer

MR MV TR Time Tri Vis

- - - - 782,018 100 %
256 128 - 42s 64,895 8 %
512 128 - 42s 87,904 11 %

1024 128 - 45s 111,012 14 %
2048 128 - 56s 132,139 16 %

256 512 - 2m:45s 88,735 11 %
512 512 - 2m:48s 115,128 14 %

1024 512 - 2m:59s 143,422 18 %
2048 512 - 3m:45s 169,526 21 %

2048 128 64 4m:25s 147,554 18 %
2048 128 256 13m:36s 167,283 21 %
2048 128 1024 48m:28s 199,605 25 %

Table 2: Results for various parameter sets tested with
the door scene.

MR SR TR Time Tri Vis

- - - - 36,621 100 %
2048 - - 16s 22,577 62 %
2048 - 1024 1m:28s 29,165 80 %

- 64 - 3m:49s 29,027 79 %
2048 64 - 2m:38s 29,347 80 %
2048 64 1024 3m:48s 29,706 81 %

Table 3: Results for various parameter sets tested with
the horn scene. The multi test used 128 camera posi-
tions.

resolution reasonable. In this case, the holes in the ge-
ometry will never become visible.

A low frame-buffer resolution can be alleviated to some
degree by increasing the number of camera positions.
This method comes at a significantly higher cost. In
fact, the complexity increases linearly with the number
of views.

Ray tracing with a large number of rays detects visible
triangles most reliably. The computation time grows
linearly with the number of rays and the number of
reflections. Most of the time is spent testing invisi-
ble triangles, because the maximum number of rays
is always shot for them. We apply the multi test in
advance, to detect many directly visible triangles very
fast. Reflections were not required for the test scenes.

Tessellations of CAD data are usually not crack free.
Many triangles are therefore marked visible, mistak-
enly. This is a problem of all tests, because a single
pixel or a single ray is sufficient to mark a triangle.
This issue could be solved by defining a threshold value
greater than one.

8. CONCLUSION

We have presented a fast and robust technique to re-
move globally invisible triangles from large data sets.



No assumptions are made about the geometry and its
topology. Two hardware accelerated tests and one ray
tracing based method were developed. The three tests
can be executed consecutively to obtain the best mer-
its of each algorithm. A commercially available imple-
mentation of the method is in use by our industrial
customers.

In a future release we are planning to integrate dis-
tributed ray tracing on PC clusters for very complex
geometries. Another feature will be tiled rendering for
the multi-test, to circumvent the limited PBuffer size.
For the single test, we want to implement a hemispher-
ical projection using vertex programs. This would re-
duce the number of render passes per triangle from six
to two.
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(a) The original engine dataset. (b) The combined multi and ray tracing tests lead to
an artifact free result. (MR 2048, MV 128, TR 1024)

(c) The multi test alone results in unsatisfying out-
put. (MR 2048, MV 128)

(d) Raising the number of camera positions to 512
still leaves some holes in the geometry. (MR 2048,
MV 512)

Figure 9: A detail view of the engine dataset showing some artifacts of the multi test.


